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Achieving Desired Performance

● Ideally, parallel speedup should be linear
– i.e., using n processors => n times faster than using 1 

processor

● Reality is stark
– Seldom do we have linear speedup
– Sometimes using more processors means slow down

● It is important to be able to understand and 
analyze performance issues of parallel 
applications
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Theoretical Performance Models
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Theoretical Performance Models

● Theoretical performance models improve basic 
understandings on parallel computing
– They also define the maximum and minimum possible 

speedups

● Theoretical models
– Amdahl’s Law
– Gustafson's law
– Karp–Flatt metric
– Speedup model with communication cost
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The Basic Speedup Definition

● Speedup of a parallel application is defined as

Speedup=
Sequential Execution Time
Parallel Execution Time
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Amdahl’s Law

● Intuition of Amdahl’s law:
– If an application has a p% parallelizable part and a 

(1-p%) serial part, 
● the minimum execution time of the application is the 

execution time of the serial part
● The maximum speedup is bounded by the serial part. 

Serial: 1-p% parallelizable: p% Serial: 1-p%

Original Execution Time Minimum execution time.
Given enough parallel processors,
The paralleled-able part’s execution
time may approach 0.
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Amdahl’s Law:
 Equation for Speedup

● The equation of Amdahl’s Law:

– Speedup is the overall speedup of the whole 
application after parallelization

– p% is the percentage of the execution time of the 
parallelizable part

– s is the speedup of the parallel part

Speedup=
Sequential Exec Time
Parallel Exec Time

=
1−p + p

(1−p%)+
p%
s

=
1

(1−p%)+
p%
s
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Amdahl’s Law: 
The Limit on Speedup

● If the parallel part speedup approaches infinity:

– i.e., the maximum speedup is bounded by the 
execution time of the serial part

lim
(s→∞)

Speedup=
1

1−p%+
p%
s

=
1

1−p%
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Another Visualization of Amdahl’s 
Law

* Figure by Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551



Parallel Computing 10

Karp-Flatt Metric

● In practice, the ratio of serial is usually hard to know
● However, 

– Speedup can be easily measured
– Parallel part speedup, s, is usually assumed to be the same as 

number of processors

● If both Speedup and s are known, then we can estimate the 
ratio of the serial part with Amdahl’s law equation

● Karp-Flatt metric, e, is the name of the “serial part ratio” 
estimated based on experimentally measured Speedup

e=1−p%=

1
Speedup

−
1
s

1−
1
s
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The Limitations of Amdahl’s Law 
and Karp-Flatt Metric

● Amdahl’s law defines the performance limit of a 
parallel application, with
– A fixed problem size, i.e., the ratios of the parallel 

part and serial part are fixed. 
● In real life, problem size usually grows with system size
● parallel part usually grows faster than serial part
● This limitation is addressed by Gustafson’s law

● Amdahl’s law does not provide any insights 
about parallel overhead
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Gustafson's Law

● Gustafson’s Law considers the growth of problem 
size

● Intuitively, Gustafson’s Law says that 
– if we can indefinitely scale up the problem size (and its 

parallelizable) with the increase of the processor count, 
the overall speedup of the whole application is the same 
as the speedup of the parallelizable part.

● Gustafson’s law reveals the true power of 
parallelization: we can solve much bigger problem 
within reasonable amount of time
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Deriving Gustafson’s Law

● Let (similar to Amdahl’s law), 
– p% be the percentage of the execution time of the original 

workload size
– s be the speedup of the parallel part
– W be the original problem size on one processor

● With more processors, increase the workload size to

● The speed for the new workload is then

new _workload=(1−p%)×W+(s×p%)×W

Speedup=

(1−p%)×W
1

+
(s×p%)×W

1
(1−p%)×W

1
+
(s×p%)×W

s

=1−p%+s×p%
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Maximum Speedup By Gustafson’s 
Law 

● If the parallelizable part is indefinitely large

– i.e., if the problem size is large enough, especially, 
if the parallelizable part is large enough, the overall 
speedup is the same as the speedup of 
parallelizable part 

lim
(p→1)

Speedp=1−p%+s×p%=s
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The Limitations of Gustafson's Law

● The sizes of some problems are limited.
– e.g., the size of a chess game at a certain stage.
– Essentially, these applications do not benefit much 

from large scale parallelization.

● Similar to Amdahl’s law, Gustafson’s law does 
not provide any insights about parallel overhead
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Speedup Equation with 
Communication Cost

● Probably originated from Michael Quinn’s 
Parallel Computing text book

● Let p% be the percentage of the execution time 
of the original workload size

● Sequential execution time is (still),
Sequential Execution Time=1−p%+ p%=1
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Speedup Equation with 
Communication Cost

● Let 
– n be the number of processors
– k(n) be the cost of communication on n processors

● The parallel execution time is then (assuming 
the parallel computation has linear speedup)

● Overall speedup is
Parallel Execution Time=1−p%+

p%
n

+k (n)

Speedup=
Sequential Exec Time
Parallel Exec Time

=
1

1−p%+
p%
n

+k (n)
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Plotting the Execution Time of the 
Parallel Part (p%/n)
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Plotting the Communication Cost 
k(n)
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Plotting the Parallel Execution time 
(%p/n + k(n)) and Speedup
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Real Speedup with Communication 
Cost

● Due to the increasing communication cost, 
– real speedup is usually sub-linear
– Speedup would reach the maximum with certain 

number of processors and adding more cores 
would only reduce speedup



Parallel Computing 22

Super-linear Speedup

● It is impossible to get super-linear speedup with 
our current theoretical models.

● However, super-linear speedup is occasionally 
possible in practice (very rare)
– Super-linear speedup is usually caused by 

improved utilization and/or size of memory 
resources, such as cache or DRAMs

– Super-linear is also possible in some algorithms 
employing exploratory decomposition
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